

Name:

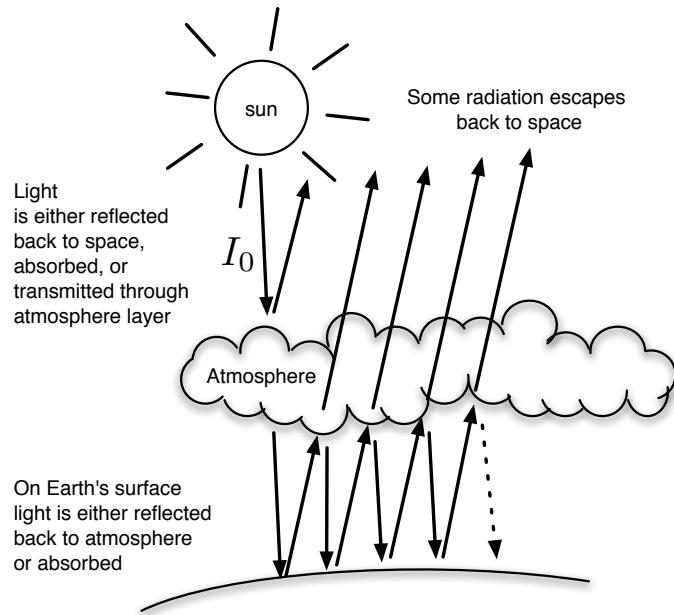
Score:

Math 1321 Worksheet 1 Due Thursday 09/04/2014

1. **(1 point)** Determine if the sequence $a_n = \frac{n^3+3n}{3n^3+1}$ converges as $n \rightarrow \infty$. Does the series $\sum_{n=1}^{\infty} a_n$ converge?

2. **(2 points) Bouncing ball:** Suppose a ball is dropped from a height of 2m and begins to bounce. The height of the second bounce is $\frac{4}{3}$ m, while the height of the third bounce is $\frac{8}{9}$ m, and so on indefinitely. What is the total vertical distance traveled by the ball?

3. (5 points) **Bouncing Sunbeams:** A sun ray with intensity I_0 is directed at the Earth (see below Figure). A fraction R_a of the ray's intensity is reflected off the atmospheric layer (depicted as a cloud) back into space. Another fraction A_a is absorbed in the atmosphere, and the remaining fraction T_a is transmitted through the atmosphere to the Earth's surface. These three fractions account for all the incoming light, therefore $R_a + T_a + A_a = 1$. The fraction transmitted through the atmosphere undergoes a similar fractionation on the Earth's surface, with a fraction R_e being reflected back, and the remaining fraction $A_e = 1 - R_e$ being absorbed (no radiation transmits through the earth—too thick). The fraction of radiation R_e reflected back upward into the atmosphere undergoes a further reflection-transmission-absorption fractionation, with some radiation (T_a) escaping to outer space, the remainder either being absorbed as heat or re-reflected back to earth in an infinite cycle on the increasingly small fraction of remaining radiation intensity. As you will see, this back-and-forth process in our atmosphere can cause a greater amount of light to be absorbed compared to a planet without an atmosphere.



(a) (2 points) Assume $T_a = 0.4$, $R_a = 0.5$, and $R_e = 0.7$. Compute the fraction of the original intensity $I_0 = 1$ that escapes back to space. Hint: Add up all the transmitted-to-space fractions and use your knowledge of series to calculate the infinite sum. Don't plug in numerical values until the end.

(b) (1 point) With parameters as in (a), what is the fraction absorbed by the earth (by both the atmosphere and the Earth's surface)?

(c) (2 points) If the atmosphere did not exist, then $T_a = 1$. What intensity will be absorbed by the planet? Compare to (b). This is a simple model of the “greenhouse” effect. CO_2 increases the absorptive fraction A_a of the Earth's atmosphere, causing greater temperature on earth.