

Name:

Score:

Math 1321 Week 2 Worksheet Due Thursday 09/11

1. (5 points) Test for convergence or divergence. Cite any tests or theorems used in your solutions.

$$(a) \sum_{n=0}^{\infty} \frac{(-1)^n n^2}{n^2 + 5}$$

$$(b) \sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$$

$$(c) \sum_{n=1}^{\infty} \frac{n!}{3^{n-1}}$$

$$(d) \sum_{n=0}^{\infty} \frac{(-1)^{n-3} \sqrt{n}}{n+4}$$

$$(e) \sum_{n=2}^{\infty} \frac{\cos(n\pi)}{\sqrt{n}}$$

2. Bond energy between salt ions Na^+ and Cl^- . Positive and negative charges form an attractive force f_a proportional to the inverse square of the distance r between the charges, which can cause the sodium and chloride to combine in a solid crystal

$$f_a(r) = -\frac{A}{r^2},$$

where A is a positive constant and the negative sign – indicates that the force f_a pulls the two opposing charges together. For large distances r , the force is weak, but nearby the force gets stronger, much like the attractive force of a magnet. The two atoms also have a repulsive force that prevents the atoms from fusing infinitesimally close to each other.

$$f_b(r) = \frac{B}{r^n},$$

where B is a positive constant and the force goes with the inverse n th power of distance (the power is typically anywhere between the 7th and 13th power, depending on the particular atoms involved).

The net force f_{net} on the two ions is

$$f_{net}(r) = f_b(r) + f_a(r)$$

The ions are in a stationary equilibrium when their position r^* is such that the net force is zero: $f_{net} = 0$.

(a) (1 points) Solve for r^*

(b) **(2 points)** From the equilibrium point, compute the bonding energy of the two molecules by computing the work involved to move the two ions from r^* , to a position infinitely far apart. That is, compute the work done against the force $f_{net}(r)$ as we pull apart the ions by making r go to infinity to verify that $W(r^*) = \frac{C}{r^*}$ where C is a positive constant that depends on n and A .